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Abstract--Imemal flows of pure vapor experiencing f i l l  condensation on the bottom wall of an inclined 
(horizontal lo vertical) channel and the inside wall of a vertical cylinder are studied. The annular flow regime 
considered here has turbulent (or laminar) vapor in the core and thin laminar condensate on the wall. Both 
smooth and wavy interfaces are considered. We propose a theory which yields a new general asymptotic 
form of interfacial shear, addresses solvability of the governing equations, gives the solution of the equations 
near the point of onset of condensation and facilitates implementation of one- or two-dimensional numerical 
schemes for the entire flow. The results, in a suitable limit, are shown to be in excellent agreement with a 
classical exact solution. We implement a one-dimensional numerical solution scheme to assess popular 
interfacial shear models and heat transfer correlations. These assessments, based on comparison of com- 
putational predictions with data from well-known experiments, identify two potentially good interracial shear 

models which can be further developed for greater reliability. © 1997 Elsevier Science. 

1. INTRODUCTION 

Downward  flows in inclined (horizontal to vertical) 
channels and vertical cylinders allow study of  internal 
condensing flows under the influence of  shear and 
gravity. We study these configurations (e.g. see Fig. 
1) to better understand such flows, to develop one- 
and two-dimensional computat ional  capabilities and 
to assess and propose models for interfacial shear. 

The internal flows considered here are simple modi- 
fications of  the classical studies dealing with external 
film condensation over vertical, horizontal and tilted 
walls. The Nusselt [1] solution for laminar and smooth 
film condensation of  stationary vapor  over a vertical 
wall has been improved and generalized in the works 
of  Rohsenow [2], Sparrow and Gregg [3], Koh  et al. 
[4], Chen [5], Dhir  and Lienhard [6], and Sadasivan 
and Lienhard [7]. Heat  transfer correlations for lami- 
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Fig. 1. The inclined channel geometry under study (0 ° ~< 0 ~< 90°). 
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NOMENCLATURE 

Fr-1 inverse Froude number, 9xLc/U 2 
~fg latent heat (/~g--,~r) (J/Kg) 
Ja Jacob number, CplA,~-/~fg 
Lc duct dimensions (Lc = h for channels 

and Lc = D for pipes) (m) 
¢~ local value of physical condensation 

rate (kg/m 2 - s) 
fia non-dimensional value of local 

condensation rate 
p physical pressure (N/m 2) 
Po pressure at the inlet (N/m 2) 
Re1 Reynolds number pl ULJ#b  I = 1 or 2 
ReL liquid Reynolds number defined in 

(A5) 
(u, v) values of x and y components of 

physical velocity (m/s) 
(u, v) non-dimensional u and 

Uf 

U 

non-dimensional value of the speed at 
the interface 
physical value of the average vapor 
speed at the inlet (m/s). 

Greek symbols 
A physical value of condensate thickness 

(in) 
non-dimensional value of A. 

Subscripts 
1 liquid 
2 vapor 
w wall. 

Superscripts 
i interface location. 

nar and wavy condensate are given in Kutateladze [8] 
and correlations for turbulent condensate have been 
proposed by Labuntsov [9]. Experimental results for 
the vertical wall geometry have been documented by 
Gregorig et al. [10]. Film condensation on vertical 
walls under combined effects of forced convection and 
gravity has been studied by Fujii and Uehara [11]. 
Shear driven laminar condensation flow over a hori- 
zontal plate has been studied by Cess [12], Koh et 
al. [4], Koh [13], etc. However, these works for the 
horizontal configuration do not deal with flow regimes 
involving wavy condensate or turbulent vapor. 

Annular film condensation for downflow in a ver- 
tical tube has been studied by analytical/ 
computational means, under various simplifications 
and assumptions, in the works of Shekriladze and 
Mestvirishvilli [14], Dobran and Thorsen [15], Wang 
and Tu [16], etc. Experimental studies or heat transfer 
correlations for this flow can be found in the works 
of Carpenter and Colburn [17], Goodykoontz and 
Dorsch [18], Cavallini and Zecchin [19], Shah [20], etc. 

In the presence of waves, development of good 
models for mean interfacial shear acting on the mean 
location of the interface is important because of its 
necessity in any meaningful theoretical (or com- 
putational) prediction capability. Such modeling 
could, in future, be related to relevant information 
obtained from an understanding of the complex inter- 
action of turbulent gas flows over wavy liquid flows 
or wavy walls. A wavy interface can be viewed as a 
surface endowed with oscillatory roughness elements 
placed in a suitable spatial arrangement with pre- 
scribed spatio-temporal variations in amplitude, 
phase, and frequency. Significant issues for wavy gas 
liquid flows are discussed in Dukler [21], Dukler [22], 
Hanratty [23], etc. Detailed wave structure studies 
for gas/liquid flows or full two-dimensional numerical 

simulations can provide insight on flow fields (recir- 
culating gas flow in the wake of a liquid crest, recir- 
culating flow in the liquid crest itself, etc.) and an 
understanding of the pressure drag and skin friction 
contributions to the mean value of interfacial shear. 
However, this paper limits itself to the development 
of interfacial shear models by a traditional approach, 
e.g. wall shear modeling of Moody [24] for pipe flows, 
etc. A traditional approach merely requires that first 
principle based theory employing the interfacial shear 
model (this being the only tentative input to the theor- 
etical analysis) should predict mean flow variables in 
reasonable agreement with experimental measure- 
ments. 

Extending the work of Narain [25] for condensing 
flows in a horizontal channel, a much simpler argu- 
ment is given in this paper to establish a more general 
and universal asymptotic form of interfacial shear at 
the point of onset of condensation ()C = 0)- -a  point 
of mathematical singularity where film thickness is 
conveniently known to be zero and condensation rate 
is infinite. The new form of asymptotic model pro- 
posed here allows us to resolve the elliptic singularity 
(see Sections 3 and 5) at ;C = 0. The resolution of 
singularity, with the help of a computer algebra based 
algorithm, provides an explicit analytical/ 
computational solution at Z ~ 0. We show that this 
algorithm, in a suitable limit, predicts numerical 
results in excellent agreement with the classical exact 
similarity solutions of Cess [12], Koh [13], etc. for 
laminar/laminar film condensation flows over a hori- 
zontal plate. For  the gravity assisted flows in tilted 
channels (0 ° < 0 ~ 90 ° in Fig. 1) or vertical cylinders, 
we only consider shear dominated flow regimes at 
?C ~ 0. As a result of shear dominance, film thickness 
variation at ;C ~ 0 is A(Z) ~ Z 1/2. The limiting analysis 
for the gravity dominated flow regime at Z ~ 0 and 
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interesting demarcation of  the parameter space into 
shear dominated (~i >> plgxA) and gravity dominated 
(zi<< pl#xA) regime.s are important (see Chen et al. 
[27]) and will be addressed in a forthcoming paper. 
For  example, for the flow in Fig. 1, at 0 = 90 °, large 
gaps h, and small values of U, the proposed analysis 
for vertical channels can be modified to yield pre- 
dictions in agreement with the Nusselt [1] result: A 
( ~ )  x ~1/4 at X ~ 0. 

The one-dimensiional numerical solution scheme 
developed and employed here is adequate for assess- 
ment of popular interfacial shear models. For  this, we 
compare numerical predictions for any given inter- 
facial shear model[ with data from the following 
experiments: (i) downflow steam condensation in a 
vertical tube, Gocdykoontz and Dorsch [18]; (ii) 
downflow R11 vapor condensation in a vertical tube, 
Cavallini and Zecchin [19] ; and (iii) R113 vapor con- 
densation on the bottom plate of a rectangular duct, 
Lu [28] and Lu and Suryanarayana [29]. 

Currently we do not have sufficiently general flow 
regime maps to predict, at the outset, whether the flow 
being considered, corresponds to a negligible entrain- 
ment annular flow or not. It should be noted that 
various other gas/liquid configurations (annular with 
entrainment, slug, plug, etc.) are possible. However, 
because vapor fraction is 100% at the inlet of the duct, 
up to a certain inlet mass flux of dry vapor, a certain 
temperature difference A~'- between the vapor and 
the condensing surface, and a certain length L of the 
channel--stable armular film condensation flows 
(with or without interfacial waves under negligible 
entrainment) are expected. This fact, along with direct 
visual observation (when available) of experimental 
runs, trends in experimental data, trends in com- 
putational predictions and flow regime maps of Bell 
et al. [30], Palen et al. [31], etc. has been used by us 
to infer whether a flow is annular (with negligible 
entrainment effects) or not. 

The following relevant and representative inter- 
facial shear models have been assessed: (i) friction 
factor models as if the gas was flowing over an imper- 
meable wall (as in Soliman et al. [32]) ; (ii) Shekriladze 
and Gomelauri [26] model ; (iii) Mickley [33] or Film 
Models (see p. 599 of [34]) ; (iv) Henstock and Han- 
ratty [35] and related Andreussi model [36] ; (v) Narain 
[25] model as a generalization of Spedding and Hand 
[37] type model ; and (vi) Wallis [38] model. We ident- 
ify that a modified Henstock and Hanratty/Andreussi 
model or Narain [25] type model are "good" models 
deserving further development. 

A good interfacial shear model predicts the flow 
variables correctly and, therefore, allows consistent 

* The wall temperature oa-w(X) is considered experimentally 
known. However, if appropriate information is available, 
°o°Jw(X ) can be assumed and the correct value can be iteratively 
obtained by solving the: conjugate problem dealing with con- 
duction in the adjacenl: plate and convection to the coolant 
flowing underneath. 

assessment of different heat transfer coefficients. In 
this spirit, we assess, in a limited range, some heat 
transfer coefficients of  Traviss et al. [39], Shah [20] 
and Numrich [40] for the vertical tube geometry. 

2. NON-DIMENSIONAL PARAMETERS AND 
MODEL EQUATIONS FOR FLOW IN AN 

INCLINED CHANNEL 

We denote the liquid and vapor phases in the flow 
(e.g. see Fig. 1) by a subscript I :  I--- 1 for liquid 
and I = 2 for vapor. The fluid properties (density p, 
viscosity #, specific heat Cv and thermal conductivity 
k) with subscript 1 are assumed to take their rep- 
resentatiVe constant values for each phase (I  = 1 or 
2). Let 3-1 be the mean temperature fields, PI be the 
mean pressure fields, J-s(P) be the saturation tem- 
perature'of the vapor as a function of the pressure p, 
A be the mean film thickness, ~ be the local interfacial 
mass transfer rate per unit area, fw(Z)* ( <  Y-s(P)) be 
a known temperature variation of the bottom plate 
and vr = ati + vd be the mean steady velocity fields. 
The distinction between mean and actual flow vari- 
ables vanishes for smooth interface laminar flows. 
Furthermore, let Lc be a characteristic length for the 
flow, gx and gy be the components of gravity along x 
and y axes, P0 be the inlet pressure, 
A~-- = ~--s(P0)- ~--w(0) be the controlling temperature 
difference between the vapor and the bottom plate, 
,~g =/~g-,~f be the latent heat of vaporization at the 
inlet temperature Y'dP0), and U be the average inlet 
vapor speed determined by the inlet mass flux. With 
(~, ~,) representing physical distances of a point with 
respect to the axes (Z = 0 is at the inlet and ~¢ = 0 is 
at the condensing surface), we non-dimensionalize the 
variables as 

{Z,~C,A, ~1,~} ------. {L~x, Lcy, L~3, Uut, p ,Um} 

{~i, :- , ,P,} = { Uv,, (AY-)Tt, po + ptU2~t,} • (1) 

For  channel flows (see Fig. 1), Lc = h. For  down- 
flows in a pipe of diameter D, the characteristic dis- 
tance Lc = D and the radial location r (0 <<. r <~ D/2) 
of a point is replaced by the corresponding radial 
distance ~ (~ = D/2--r)  from the wall. 

The scaled differential forms of mass, momentum 
(x and y components) and energy equations for the 
interior of  either of  the phases, the interface 
conditions, the conditions at the condensing surface 
(y = 0) or upper wall (y = 1) are well-known and can 
be found in Carey [41] or Narain [42]. An inspection 
of these equations yield the fact, that, for thin films 
and fixed acceleration due to gravity, the flow is affec- 
ted by the following minimal set of five independent 
non-dimensional parameters: 

{ .+ Rein,_~r , Fr_ l, 02 (2) 
Pl # l )  

where Rein - p2ULdp2 =- Re2, Prl -- #lCp]/k], 
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Ja = Cp,A.Y-/~g and Fr ~ - 9xLc/U 2. Here Rei,, Fr -j 
and Ja/Prl are control parameters associated with 
inlet speed U, inclination 0 and temperature difference 
A J-.  The density ratio pz/Pl and viscosity ratio #2/#~ 
are passive fluid parameters. However, when the inter- 
face is wavy, the equations governing the evolution of 
superposed disturbances imply additional dependence 
on the surface tension parameter (~r/p~ UZLc, or equi- 
valently, crplLc/# 2, where a is the liquid/vapor surface 
tension) and another gravity parameter (gyLc/U 2 or 
the tilt angle 0 in Fig. 1). The surface tension and 
the normal component of gravity (gy) play a role in 
determining the critical inlet Reynolds number ReLL 
at which two dimensional waves first appear on the 
smooth interface at some downstream location. In 
other words, for any fixed orientation with respect to 
gravity, the surface tension parameter (say crp~Lc/#~) 
should be added to the argument list for ReEL (termed 
ReE in Ref. [25]) in equation (28) of Narain [25]. How- 
ever, once the interface is fully rough (i.e. Re~, > Reu, 
where Reu, as in equation (28) of [25], is the inlet 
Reynolds number at which three-dimensional waves 
fully cover the interface), the surface tension forces 
become unimportant in comparison to the pressure 
and friction drag on the oscillating roughness elements 
(the waves). In the fully rough regime, the surface 
tension effects are perhaps only responsible for wrin- 
kles on the more dominant modest curvature shear/ 
gravity/inertia waves (roll waves, etc.). The above 
description of the role of surface tension is in accord 
with known results for water films flowing down an 
incline (see p. 8 of Alekseenko et al. [43] for 0 < 90°). 
Therefore, excluding an often narrow parameter zone 
of ReEL <~ Rei~ <<. Reu, for fluids and flow speeds con- 
sidered here, wave effects are adequately accounted 
for by the inlet Reynolds number Rei,, the non-dimen- 
sional temperature difference Ja/Pr~, and the inverse 
Froude Number Fr -j .  For the vertical configuration, 
ReEL is small and Retj is the demarcation (see And- 
reussi [36]) between rippled interface regime and larger 
amplitude disturbance wave regime. However, in the 
vertical configuration, as we see later, much of the 
rippled interface regime ReLL <~ Re~, <~ Reu is nearly 
smooth in the sense that the ripples do not have a 
significant impact on f ~  (defined in equation (3) 
below). 

For laminar or turbulent flows of vapor, the one- 
dimensional approach only needs the values of the 
vapor shear at the interface (y = 6(x)) and at the 
upper wall (y = 1). For  these stresses, shown in Fig. 
1, we define the friction factors f,  f ~  and f ,  through 
the relations 

1 2 1 2 
e(x)  - ~ p~(Uuav(X)) f =- ~ p2{ U(Ua~(X)-- U~X))} ~o1 

1 2 
z~(x) = ~p2(Uu.v(X)) ~fu, (3) 

where inlet speed U and the non-dimensional average 
speed Uav(X) are given by 

U = ~iia2(0,  ~¢)d~¢, 

Uav(X) -- 1 ---6(x u2(x, y)dy (4) 
d~(x) 

and ur(x) -~ u2(x, 6(x)) -~ Ul(X, 6(x)) is the non-dimen- 
sional value of fluid speed at the interface. 

Further approximations for  thin film flows 
These approximations are the same as in Narain 

[25]. Therefore, equation (6) of Narain [25] continues 
to define the linear liquid temperature profile while 
the liquid velocity profile in equation (5) of Narain 
[25] is replaced by 

ul(x,y)  = Rei, - ~x +Fr- I  

The additional Fr-~ term above accounts for gravity 
assistance available in the tilted channel and vertical 
pipe configurations. 

The non-dimensional 9overnin# equations for  the one- 
dimensional approach 

For the tilted channel flow in Fig. 1, the governing 
equations are the overall mass balance, interface 
energy balance, and vapor momentum balance. These 
are, respectively, given by equations (7)-(9) of Narain 
[25]. For  the vertical tube, the corresponding equa- 
tions are similarly obtained. 

3. A HEURISTIC ARGUMENT FOR ASYMPTOTIC 
SHEAR 

The classical equations (see Koh [13], Narain [42], 
etc.) for annular film condensation are based on stan- 
dard scaling approximations (Chen and Koca- 
mustafaogullari [44], etc.) valid only for Z/> e for 
some small e > 0. Loosely speaking, these equations 
are parabolic in x-direction and elliptic in y-direction. 
This means that inlet conditions (including A(0) = 0) 
at Z = 0, the bottom wall conditions at ~¢ = 0, the 
interface conditions at ~¢ = A(Z), and the top wall 
conditions at ~¢ = h should suffice for their solution. 
However, unlike classical boundary layer equations 
for a single fluid flow, the situation here is complicated 
by the fact that the singularity at ~ = 0 requires, for 
a solution, a certain asymptotic behavior ofinterfacial 
shear z i and this makes the behavior of the equations 
"elliptic" over 0 ~< Z ~< e. By "elliptic" we mean that 
the information at Z = 0 is not sufficient, one has 
to depend on information from Z > 0 to predict the 
solution at Z ~ 0. The scaling assumptions fail at 
Z ~ 0 because dA/dz, curvature, etc. are large, and 
interfacial shear z i is not nearly parallel to z-axis. In 
fact the governing equations studied in this paper or, 
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for that matter, in the classical papers of Nusselt [1], 
Koh et al. [4] etc. do not even model the flow physics 
over 0 ~< Z ~< e. Therefore the purpose of resolving 
the singularity over this region is to obtain "that" 
significant information which is required for a valid 
connection between the known inlet conditions at 
Z = 0 and the solution of the valid governing equa- 
tions over ~ >~ e. In order to use the classical for- 
mulation and the convenient inlet condition A(O) = O, 
we can extend the scaling to an inlet region 0 ~< 2 ~< 
provided we understand the above stated purpose. 
Since, at ~ ~ O, liquid condensate is laminar and very 
thin (no inertia) condensation rate per unit area 
~(~klA~--/~gA) becomes high and this makes the 
interfacial shear (due to large Ovz/0 Z term) very large. 
However for compatibility with )~ >~ e, it is reasonable 
to assume a shear dominated (z ~ >> P19~A) inertia free 
region for the thirL condensate at Z ~ 0. The flow, 
primarily driven forward by interfacial shear z i, is 
given by 

~i(z) 
~I(Z,~) ~ W ~  (6) 

for Z ~ 0. Requirement of mass balance for the tiny 
leading edge control volume IJK in Fig. 1 gives 

plJ0 -td~¢. (7) 

On substitution of equation (6) in equation (7), we 
find that the asymptotic (at ~ ~ 0) form of interfacial 
shear zi(2) is given by 

2V 1 J"z , "d 

Since the above integral in equation (8) requires 
information from a "neighbourhood" of ~ = 0 (and 
not just X = 0), we have termed the singularity at 
Z = 0 "elliptic". Under the non-dimensionalization 
notations in equations (1)-(3), equation (8) becomes 

4 __{p,'~fXrhdx z , (9) fa~y =- fl~-o Rel~ (x)~P2JL 

where from equations (6) and (8) or Narain [25], 
rh ~ (Ja/PrO(1/Rel)(1/6). In Section 5 of this paper, 
we formally show that equation (8), despite the heu- 
ristic nature of the above arguments, remains the 
required asymptotic form even in the presence of all 
the other constraints imposed by vapor momentum 
balance; interface mass, momentum, and energy 
transfer rates; and presence of other forces con- 
tributing to the motion of the condensate. 

However, for certain vertical or tilted flow situ- 
ations under low (or zero) vapor speeds U (large Fr - J), 
gravity is significant (z~ ~ plg~A) or gravity dominates 
(p~g~A >>zi) at X ~ 0. In this situation, gravity con- 
tribution on the right side of equation (6) becomes 
significant over a control volume IJK in Fig. 1. There- 
fore, for such situations, equations (6) and (8) need to 
be modified. 

Note that substitution of equation (5) of  this paper 
and equations (6) and (8) of Narain [25] into the mass 
balance equation (7) of Narain [25] gives, for the flow 
in Fig. 1, the expression : 

f = I { 1 -  U~v(1- 6) ) Re 4~vr~2 

4dTz 1 q 
4plFr3p2 Ua2v16+~XX~2 6 j .  (10) 

The first term in equation (10) is dominant over the 
control volume IJK in Fig. 1 for flow situations involv- 
ing small to moderate Fr- l (horizontal and some grav- 
ity assisted situations) and this leads to equation (9). 
For  large Fr -~ (e.g. stagnant vapor condensing on 
vertical walls), the first two terms of equation (10) are 
dominant over most of  the control volume IJK in Fig. 
1. 

4. THE CLASSICAL ONE-DIMENSIONAL 
FORMULATION 

We assume that the condensate flow is laminar and 
thin. Next we make a choice of uniform (as in equation 
(10) of Narain [25]) vapor velocity profile. For  flows 
considered here, relevant results for the horizontal 
case described in Section 3 of Narain [25] apply. For  
the flow in Fig. 1, the governing equations described 
earlier are cast in the form of equation (12) of Narain 
[25] and then recast in an equivalent form 

d-x = g(Y'f)'  f = f x, R6'in , Ft I Ja P2 ,112 
' Prl 'Pl 'l~l / '  

y(0) = [0, 1,0] T, (11) 

where y = [n(x),U.v(X),6(x)] r, g - [q~,g2,g~] T and 
components .ql, if2 and g3 of g are written in terms 
o f  A22 , A23 , A32 A33, bl, b2 and b 3 appearing in the 
intermediate equation form specified by equation (12) 
of Narain [25]. 

For  downflow in tilted channels, except for a cor- 
rected definition of A22 and a new definition of bl given 
by equations (A1)-(A2) in the Appendix of 
this paper, the rest of the terms appearing in the defi- 
nition of gj, 92 and g3 in equation (11) above are the 
same as those given by equations (A1)-(A11) in the 
Appendix of Narain [25]. In the above formulation,fu 
defined in equation (3) is assumed to be given by f0 
defined in equation (13) of Narain [25]. For  downflow 
in vertical pipes, the definitions o f  A22, A32 , A33, b~ and 
b3 change from the above specification of gl, 92 and 93 
for the tilted channel case. These new definitions are 
easily obtained and will be reported elsewhere. 

5. FORMAL RESULTS ON THE SOLVABILITY OF 
THE EQUATIONS AND THE RESOLUTION OF THE 

SINGULARITY 

The requirement 6(0) = 0 makes the function g in 
equation (11) singular. Trial and error method of 
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guessing an initial condition at a small x = e was 
found to have an extremely low success rate because 
the solution does not exist for just any f Therefore, 
one has to guess a consistent set of four values, 
namely: 6, U,v, f and n at x = e. By consistent, it is 
meant that all balance laws are satisfied for control 
volumes having edges at x = 0 and x = e. Further- 
more, because of non-uniqueness of such consistent 
sets of values, not all consistent guesses may work! 
Clearly a methodical resolution of singularity is 
needed. An investigation of equation (11) for the flow 
in Fig. 1, with the help of modern computer algebra, 
establishes the following result. 

Theorem 
There exists a solution of equation (11) if and only 

if the friction factor is of the form 

+ +o(i) 
f = Re, [ c 2 J X 1/2 

4 ~1 -- Ua,(1-- 6).} + 0 T  
= R e l )  ~ I , )  

8 Ja Pl 1 
(12) 

where the constants c~ and c2 appear in the definition 
of the vector y~ appearing in the asymptotic solution : 

y(x) = yo+y~xl /2+yzx+ysx3/2+O(xS/2  ). (13) 

In equation (13) above, Y0 = y(0) = [0,1,0] T, 
Yl = [k~, -c2,  el] r, Y2 and Y3 are constant vectors. The 
numbers k~ and c2 and the vectors Y2, Ys, etc. are known 
when ct is known. For  example, for tilted channels, kl 
and c2 continue to be given by equations (A12) and 
(A 13) in the Appendix of Narain [25] and for vertical 
pipes, they are obtained by a similar procedure. 

The constant c] is obtained as a convergent root 
among the zeroes of a sequence of well defined non- 
linear functions qscm. The steps needed for generating 
the complex definitions of W(m, Y2, Y3, etc. on the 
computer are the same as that described in Section 5 
of Narain [25]. The functions Were are of the form 

W(m(el,~ Ja ~ - - 1  P2 
/~ein, ~ r l , / ' r  ,~11 , ~ ) =  0 (14) 

where N = I, 2, 3 . . . . .  is a positive integer. For  tilted 
channel flows, we restrict the parameters in (2) to the 
useful range : 

0.004 ~</92 ~< 0.009, 0.016 ~</z2 ~< 0.026, 
P] /.q 

Ja 
0.009 ~< Pr-~] <~ 0.045, (15) 

9500~<Rei,<~90000 and O<~Fr-~<<.O.7. 

We write the numerically obtained convergent root 
of equation (14) in the convenient form: 

Cl =- Cl0+Acl (16) 

where c~0 is the root of equation (14) for Fr - t  = 0 and 
Cl is the root of equation (14) for Fr -~ 4: O. 

For downflow in channels, under the assumption of 
uniform vapor velocity profile, numerically obtained 
convergent root of equation (14) is given, for the par- 
ameter range specified in equation (15), by the 
approximate power law fit : 

(p2"~ ° l'13 (M]-°  3~8~ ( Ja']° 2"2 
c,0 = 1 .1845 \y}  \P-~z} \ f i r  U 

× ( R e i n )  -0"4022 

A c  I = 0.7861 \ ~ }  \ ~ j  \~r~r~j 

× (Rein)-o.3097(rr-,)0.2281. (17) 

For  downflow in pipes, equations (12), (15) and (17) 
are suitably modified. In this case, convergent root of 
equation (14) is given, for the parameter range speci- 
fied in equation (15), by the approximate power law 
fit : 

= 0  9898(P~ -°1651 (It-3z~-°4865(ja'~ °594' 
C,o . \ P l /  kit1/I \Pr~} 

× (Rein)- 0.49 3 7, 

0 6468(P~°°2876(~-°3'21{ja~ °1161 
Ac~ = . \Pl/ \~lJ \erl/ 

× (Rein)-O.3074(Fr-1)0.1927. (18) 

In the parameter space (2), over the hyper square in 
equation (15), the solution in equations (17) or (18) of 
equation (14) models a hyper plane "close" to the 
solution surface c~ = cl(Rei,, Ja/ Prl, Fr -1, P2/Pl, /~2//~t) 
represented under a logarithmic scale for Cl and all its 
arguments. Note that for any power law correlation, 
over a hyper square (such as equation (15)), the 
exponents of parameters on the right side of equations 
(17)-(18) may not be representative near the edges of 
the hyper square. This is because, different adjacent 
hyper squares can be chosen to cover the same data 
points at the boundary and, over different hyper 
squares, one may need hyper planes of  quite different 
orientations to fit more drastic bends in the adjacent 
portions of the same solution surface. Therefore, more 
important than the exponents is the fact that the fits 
given by equations (17)-(18), over (15), are within 
___ 7% of the convergent roots obtained directly by 
numerical solution (by bisection method) of equation 
(14). 
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Table 1. Numerical verification of equation (20) for the limiting situation of flow over a horizontal plate (Fr- ~ = O) 

Flow situation Re~. 

Converged f~ (0) ( 1 / 2 ) f ( x ) ~  
Cl from (from (2 and 3 term 

ud~m = 0 q~ f~ in expansions by the 
N = 2, 3. method x/(pl#2)/(p2#l)clx//~i~ method method of Section 5) 

(method of of Koh (method of of Koh 
Section 5) [13] Section 5) [13]) x = I0 -5 x = 0.005 

Case I 625 1.03102 
P2/p~ = 0.00495 104 0.0075 
#2/~ = 0.02087 15 x 104 0.00200 
Ja/Prl = 0.00668 19 × 104 0.00178 

1.592 0.65123 0.65124 
1.5921 1.592 0.65109 0.65123 0.65124 

1.592 0.65123 0.65124 
1.592 ~ qa 0.65123 ~ 0.65124 

f~(0) f~(0) 

Case II 625 0.04862 
P2/pJ = 0.05266 104 0.01215 
Vz/#I = 0.07620 15 × 10 4 0.00314 
Ja/Prl =0.02659 19 x 104 0.00279 

1.462 0.53742 0.53742 
1.4619 1.462 0.53746 0.53742 0.53742 

1.462 0.53742 0.53742 
1.462 ~ q, 0.53742 ~ 0.53742~ 

f~ (0) f~ (0) 

Proof  o f  the theorem~results on non-uniqueness 
With approprieLte modifications, the proof and 

other results are similar to those in Section 6 of Narain  
[25]. Furthermore,  the numerically obtained c~ values 
have trends similar to that shown in Table I of  Narain 
[25]. Therefore, there is non-uniqueness if we are only 
looking for a consiistent set of values of fi, U,v, n a n d f  
at some x = e. However, the stable solution cor- 
responding to a convergent root should satisfy the 
asymptotic shear requirement in equation (12) for any 
small x ~ 0. This condition is met only by that root 
of equation (14) w]aich is independent, or nearly inde- 
pendent,  of  N in ~g(u). The stable root, thus chosen, 
leads to the determination of the constant  vectors Yt, 
Y2, Ys, etc. and these vectors bring information from 
the downstream regions towards the resolution of the 
elliptic singularity at x ~ 0. 

Dependence of  c~ on velocity profile and f at large x 
If  we choose a non-uniform velocity profile in the 

formulation leading to equation (11), a convergent 
root for c] is obtained which is generally different from 
the values in equations (17)-(18). This is under- 
standable because 1:he interfacial shear should depend, 
in laminar or turbulent  flows, on the nature of vapor 
velocity profile. Despite this, the solution of this classi- 
cal one-dimensional problem in equation (11) is very 
useful because it can be used for subsequent two- 
dimensional numerical solution (e.g. by employing 
tiny finite volume elements shown in Fig. 1). In the 
two-dimensional simulation, iterative improvements 
of 6, u~. (through equation (4)), and asymptotic shear 
(as given by the cc,nvenient form on the right side of 
the second equality in equation (12)) would lead to 
the needed resolution of singularity at x ~ 0 and a 
converged solution of 3, f and u2 (x,y)  for x ~> e. In 
this paper, a two-dimensional solution is not  obtained. 
Yet, the results in equations (12)-(18) provide a valu- 
able one dimensional numerical integration tool (see 
Section 7) for obtaining a good solution of the prob- 

lem at large x with the help of  a "good" model f o r f  
at large x. 

Limits imposed by vapor speed and gap size for  tilted 
configurations F r -  l q: 0 

For the flows considered here, we find that the root 
of c~ of qJ~m in equation (14) does not  converge for 
large values of Fr -1. Hence, asymptotic solution in 
the form of equation (13) is possible only for Fr -l  in 
a restricted shear dominated range (such as equation 
(15)). For  large Fr -1, one should replace the asymp- 
totic shear in equation (9) by the first two terms in 
equation (10). When this is done and a suitable analy- 
sis is performed, one can obtain, as we show in a 
forthcoming paper, the limiting Nusselt [1] solution 
behavior of 6(x) ~ x TM at x ~ 0. 

6. COMPATIBILITY OF THE NEW THEORY WITH 
THE KNOWN EXACT SOLUTIONS 

Note the earlier result of  3 ( x ) ~  Clx/~ and 
f ~ 1/x/Cx at x ~ 0 is in qualitative agreement with the 
exact similarity solution (Cess [12], Koh  [13], etc.) 
for laminar (vapor and condensate) film condensation 
flows over a horizontal (Fr- ~ = 0) plate. The classical 
solution (Koh [13]) gives 

A(Z) - r l , x / ~ p ] U  and a2(Z,~¢) = Uf'2(¢) (19) 

where the number  r/, and the function f~(¢) with 
- c(~¢-A(z))/A(z), c -= r / , ~  are obtained 

by a well defined procedure given in Koh [13]. 
For  laminar vapor flow in Fig. 1, in the limit of  

h ~oo  (i.e. Rein ~ oo), it is easy to verify that the 
classical solution in equation (19) and the interface 
condition z i =  112(du2/Oy)li would be in quantitative 
agreement with 6(x) = clxi/2+ . . . . .  in equation (13) 
and f i n  equation (12) if and only if lim c t ~  
and l i m  f ~  exist and satisfy Re~.~. 
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lim ( c , ~ , i , ) =  r/a 
R e i n  ~ oo  

(1/2) lim f ~ = f ~ ( 0 ) .  (20) 
Re in  ~ oo  

Now ca depends on the choice of u2(x, y). Therefore, 
if we chose a correct u2 (x, y) profile in our solution 
method and we are able to numerically verify the 
equality in equation (20), then it would establish the 
correctness of the asymptotic friction factor formula 
and the complex computer based algorithm for finding 
the root Cl and other constants. This requires more 
than merely letting h ~ oo in the analysis for flow 
between horizontal parallel plates. In the absence of 
a two-dimensional scheme, to verify equation (20) 
with the help of the above one-dimensional scheme, 
we set Fr-a = 0 and choose the exact velocity profile 

u2(x, y) = f i (~) ,  (21) 

wheref~(~) is the similarity solution in equation (19) 
as obtained by the method given in Koh [13]. Fur- 
thermore, in one-dimensional formulation, infor- 
mation at y = 1 (i.e. ~¢ --- h) influences the solution at 
y = 6(x) because of the single element (such as ABDC) 
involved in Fig. 1. Therefore, to simulate actual 
u2(x,y) effects, we allow mass flow (using non-zero 
vz(x, 1) from the similarity solution) out of the plate 
at ~¢ = h. This models deflection of streamlines away 
from the plate as found in the solution (Koh [13]) for 
flow over the horizontal plate. For  large y, assuming 
velocity and pressure approach the fiat plate solution, 
we set f~ = 0 (because u2(x, y) ~ U) and require the 
constantsf0o,f0a, etc. in the interfacial shear expression 
f (x)=fx-~/2+foo+folX~/Z+ . . . . .  to be such that 
dzt/dx ~ O. Here f =  4(ca +c2)/Reac~ is obtained by 
the existence requirement (as in Section 5) andf00,f0~, 
etc. are chosen such that k~, k2, etc. are zero (since 
dn/dx ~ 0). In accord with the above recommen- 
dations, we modify the governing equations (11) and 
implement the procedure given in Section 5 of Narain 
[25]. For  brevity, we do not give here the modified 
forms of the resulting equations. Under the above 
modifications, the one-dimensional approach 
coincides with a two-dimensional numerical scheme. 
Representative results in Table 1 numerically verify 
the equalities in equation (20). Considering the 
complex, numerous, but very different kinds of steps 
involved in obtaining r/a (see Koh [13]) and el, the 
excellent verification of equation (20) in Table 1 is a 
remarkable validation of the proposed asymptotic 
form ofinterfacial shear and the general purpose com- 
putational/analytical procedure given here to resolve 
the elliptic singularity at x ~ 0. In Table 1, h ~ 
situation is quickly realized at moderate Rein because 
gap h quickly becomes larger than vapor boundary 
layer thicknesses at x ~ 0. 

7. ASSESSMENT OF POPULAR INTERFACIAL 
SHEAR MODELS 

Once the asymptotic modelfa~y, the leading term on 
the right side of equation (12), has been obtained 

for 0 < x < e for some small e, one can connect any 
popular interfacial shear modelfmod~l (valid for x >/e) 
tof ,  sy by a suitable approach. One connection Offasy to 
fmo~o~ is given in equation (20) of Narain [25]. Another 
connection recommended by us makes use of the 
observation (see Fig. 5) thatf~y typically falls rapidly 
from large values to small values and, therefore, we 
can also use : 

[ q~ ] t f~sy f ° r q ~ < - 3  
f=fmo~ol exp(~b)-I  ~ ~fmo~o~ for --0.4 ~< ~b ~< 0, 

(22) 

where ~b - --fasy/fmodeJ. The above formula in equation 
(22) is an adaptation of a recommendation given in 
Hewitt et al. (see p. 603 of Ref. [34]). 

At large x, typically less than O(h), it is found that 
the numerical solution of equation (11) does not 
depend on a particular method of connectingfmodo~ to 
fasy at x ~ 0. Despite the limited practical significance 
of the question as to what is the right connection of 
fasy to a good fmode~, a good scientific answer to this 
question will have to wait until a sound theoretical 
understanding (scopes, limitations, range of appli- 
cability, etc), is available for a goodfmodov If  the good 
models sought here are refined and made valid over 
smooth, nearly smooth, and wavy interface zones; 
then the issue of connectingfasy tOfmoa~m would not be 
significant---except for very tiny distances. 

Various choices of fmod¢l 
There are several recommendations for fraod¢l in the 

literature. We consider here Shekriladze and Gome- 
lauri [26] model, Mickley [33] model or Film theory 
(see p. 599 of Ref. [34]), Henstock and Hanratty [35] 
type model for vertical downflow as modified by 
Andreussi [36], Andreussi model [36] with Shekriladze 
and Gomelauri [26] type suction effect, single phase 
flow friction models, generalized Narain [25] type 
model, and a modified Henstock and Han- 
ratty/Andreussi model. These models are defined in 
equations (A3)-(A11) of the Appendix. The above 
representative works have already taken into account 
several other models which do not work, therefore, 
there are many other models whose assessments are 
not reported here. These omitted models can be veri- 
fied to be ineffective in reasonably predicting annular 
film condensation flows considered here. Among these 
are Wallis model (see Carey [41]), etc. In equation 
(22), we substitute for fmo~o~ any of the formulas for 
fmodoli in equations (A3) -Al l )  and find a cor- 
responding numerical solution of the governing equa- 
tion (11). In the approach of this paper, all the local 
flow variables (Uav, &etc.) used in evaluating these 
models are such that they exactly satisfy the mass 
transfer (suction into the film) condition at the inter- 
face and, therefore, suction effects are fully accounted 
for. The models are, therefore, being tested for their 
hydrodynamic efficacy in modeling interfacial shear. 
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To test the models, we specify flow parameters to 
simulate specific experimental situations and then 
compare theoretically predicted and experimentally 
obtained values of'local (~z) or  average (~z) heat trans- 
fer coefficients defined in equation (38) o f  Narain [25]. 
Note  that, even after the resolution o f  the singularity 
at x ~ 0 by the method given in Section 5, the vector 
differential equation (11) is stiff and requires fifth- or 
sixth-order accuracy schemes to be implemented on a 
sufficiently fast machine in double precision mode. 

Relevant experimental data 
There are many experimental measurements of  

average heat tran.,;fer co-efficient for specified lengths 
of  internal condensing flows. Here we consider a few 
representative runs (see Table 2) corresponding to 
annular negligible entrainment flows and laminar con- 
densates (ReL(X)< 1600) from the following experi- 
ments:  (i) experiraent I (Cavallini and Zecchin [19]) 
dealing with downflow condensation of  R11 vapor  in 
a vertical pipe; (ii) experiment II (Goodykoontz  and 
Dorsch [18]) dealing with condensation of  steam in a 
vertical pipe o f  no:a-constant wall temperature 3-w(Z) ; 
and (iii) experiment III  (Lu [28]) dealing with con- 
densation of  R113 in a horizontal duct of  rectangular 
cross-section. Of  ~Lhe above, experiment III has been 
observed through transparent walls and is known to 
belong to the annular zero entrainment flow regime. 
However,  only those representative runs (see Table 2) 
of  experiments I and II are considered here which have 

been inferred (based on experimental /computat ional  
trends and flow regime maps) to belong to the annular 
negligible entrainment flow regimes. The data from 
vertical pipe experiments I and II are directly com- 
pared with predictions for vertical pipes. 

Interestingly, under certain conditions, we can also 
compare vertical channel predictions with a cor- 
responding vertical pipe (diameter D) experiment pro- 
vided we set 

h = D/4, (23) 

for the characteristic length Lc for channel flows. Now,  
for equal lengths of  the two ducts, equation (23) 
insures that the ratio AdAco,a of  cross-sectional area 
Ac to the condensing surface area Aco,, is the same. If, 
for the two situations, we also assume that inlet speed 
U, temperature difference A J ' ,  wall temperature ~--w, 
and inlet pressure Po are the same, then it is reasonable 
to expect approximate equality of  average heat trans- 
fer co-efficient 7~ z. This is because, if  the characteristic 
length given in equation (23) is also used for non- 
dimensionalizing the flow variables in the vertical pipe 
situation, then the non-dimensional parameters listed 
in (2) become identical for the two situations. As a 
result, the arguments of  the liquid fraction z in equa- 
tion (A13) of  the Appendix become the same and, 
hence, z is the same for the two situations. Therefore, 
the overall energy balance equation (A13) implies 

~xlvertical pipe ~ ~/~xlvertical channel (24) 

Table 2. Shear dominated annular flow experimental runs and theoretical predictions 

Expt. 
run U Po Experimental 

Experiment no. (m/s) (kPa) variable used 

Theoretical 
predictions of the 
experimental ~z or 

~ with 
f=oa.. (i = 1 to 6) 

used in equation (22) 

No. I. 34 26.85 111.90 Value of~z 
Fluid: R-11 46 26.01 129.80 at x = 1.7m 
Vertical Cylinder 72 11.66 125.78 
D = 4h = 0.02 m 74 12.25 125.33 
L = 1.7 m 99 21.28 123.09 
J-w ~ const 

Agreement within 
+25% f o r / =  5&6.  
No agreement within 
+25% for i = l to 4. 

No. II 
Fluid : steam 
Vertical Cylinder 
D = 4h = 0.016m 
L = 2.134 m 
3-w(X) # const. 
obtained from expt. 
data. 

1 70.71 110.62 Value of~x 
6 22.02 310.70 at Z = 0.51, 1.51, 
5 20.84 270.13 2.51, 3.51, 
7 36.22 266.15 4.51 and 5.51 

Agreement within 
+25%for  i = 1 to 6. 

No. III 
Fluid : R- I 13 
Horizontal channel 
h = 0.025 m, w = 0.04 m 
L =  1.5m 
3- w ~ const 

221 0.31 108.82 
181 0.50 111.53 
248 2.15 102.39 
262 2.69 100.92 
294 4.06 102.50 
288 4.34 101.49 
269 1.15 103.25 
268 1.40 99.75 

Values of ,~ 
at X = 0.5993 m, 

and 
= 0.8990 m 

Agreement within 
+25% for i = 5 &6. 
No agreement within 
+25% for i = 1 to 4. 



3568 A. NARAIN et al. 

¢.,i ! 

45000 

40000 

35000 

30O00 

25000 

20000 

15000 

100~ 

5000 

0 
0.0 

I I I I 

~hanne l  

Cylinder  

°°°~ . . . . . . .  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

, I , I , I , 
0.5 1.0 1.5 

x (m)  

S 

I 
2.0 2.5 

Fig. 2. The above figure compares the average heat transfer coefficient 7~ for a specific representative flow 
situation given by run no. 46 of Experiment I in Table 2. The computation employsfmoaoJ6 given in (A11). 

for any length Z within the annular regime under 
consideration. As we see in Fig. 2, the more detailed 
solution of equation (11) for the two flows is in agree- 
ment with equation (24). The fluid properties (using 
ASHRAE Handbook [45]) for the experimental runs 
considered here restrict us to the parameter range in 
equation (A14) for channel flows and the parameter 
range in equation (A15) for downflow in pipes. 

Assessments 
The results for vertical or horizontal channel situ- 

ations are shown in Table 2 and this indicates that 
none of the popular models uniformly do well for all 
the three experiments in Table 2. For  example, the 
models fmodell through fmodel4 in equations (A3)-(A9) 
of the Appendix are adequate for steam in expt. II but 
they are inadequate for R11 in expt. I or R113 in expt. 
III. However, the modified Andreussi modelfmoa~6 in 
equation (A 11) and Narain [25] typefmoa¢~ 5 in equation 
(A10) do well for experiments I, II and III. The results 
for downflow in vertical pipes, because of (24), remain 
much the same. 

Note that the vertical situations (experiments I and 
II) will differ from the horizontal situation (experi- 
ment III) in the wavy structure of the interface. There- 
fore, we do not expect that a model for the vertical 
configuration would, in general, work for the hori- 
zontal configuration. However, what is clearly inad- 
equate is that the existing modelsfmod¢~ ~ throughfmodel4 
in equations (A3)-(A9) do not uniformly work for 
both experiments I and II. 

Identification/proposal o f  some adequate or good 
models 

The detailed predictions (not shown here) of 
Andreussi Model [36] fmodol4 is reasonable (nearly 
within_ 25%) for experiment I and qualitatively cor- 
rect for experiment II. The lack of quantitative agree- 

ment is due perhaps to the density ratio P2/P~ being 
significantly out of range of  the original Henstock 
and Hanratty [35] considerations. For  turbulent flows, 
density P2 is very important in affecting near interface 
turbulence and drag. Hence, the proposed replace- 
ment of the function f(P2/PO in equation (A8) by 
fmoai~ca(P2/PJ) in equation (A11) produces reasonable 
results for experiment I, experiment II and in a sense 
to be described, smooth interface regime of experi- 
ment III as well. Therefore, fmodel6 seems  promising 
and appears to be a good candidate for further devel- 
opment. 

The Narain [25] type model is known to be adequate 
for the horizontal channel flow. Its obvious gen- 
eralization in equation (A10) of the Appendix is also 
promising and can be developed (i.e. correlation for 
fl can be obtained) if sufficient experimental data is 
available in a suitable form. 

Re#ularities in our calculations and assessments 
• For  a chosen fmode~, say modified Andreussi model 

in equation (A11), we solve for flows in a vertical 
channel and a vertical pipe under similar conditions 
and by incorporating the required asymptotic 
behavior o f f  through equation (22). The approxi- 
mate equality expected in equation (24) implies 
approximate equality of the local heat transfer co- 
efficient /~x' Representative calculations shown in 
Fig. 2 meet this expectation and support the cor- 
rectness of our calculations and calculation 
procedure. 

• Andreussi model [36] in equation (A6)-(AS) is sup- 
posed to work for downward vertical gas/liquid 
annular flows (from ripples zone to larger amplitude 
disturbance wave regime under negligible entrain- 
ment conditions). Therefore, we find, the modified 
Andreussi model in equation (A11) forfmoael in equa- 
tion (22), works well for the vertical condensing 
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flows considered here. However, for estimating the 
interfacial shear, and for help in separating the 
effects of relative speed (uav-uf) of  vapor with respect 
to the interface from the effects of the structure of 
waves on the interface, it is good (see Hewitt and 
Govan [46]) to use relative friction factorfrol in equa- 
tion (3). Therefore, if we define 

1 2 1 2 2 
"l~ert ~ 2P2(UUav(X))~fvert = ~P2 U (Uav--Uf)~f~vertre, 

(25) 

the relative speed based friction factorf~rt=l for the 
vertical configrLration can be numerically obtained 
through the above equation (25) as f~,rt and uf are 
known through our one dimensional computational 
solution of equation (11). This is necessary because 
direct use of relative friction factor is not rec- 
ommended here. This is because uf, evaluated as 
u~(x, 6(x)) in equation (5), would become unnecess- 
arily complex iffrol (instead o f f )  is used and this 
would also lead to a far more complex formulation 
than equation (11). 

We expect, particularly for smooth (or nearly 
smooth ripple interface) vertical channel flows, that 
fv~n~el should be nearly equal (or nearly equal) to the 
relative speed based friction factor fho,~rol if the cor- 
responding channel flow in the horizontal con- 
figuration is also a smooth interface flow. This is 
because differences in the physical values of z ~ for such 
situations are largely due to differences in the relative 
speed (U~v-Uf). For  brevity, without showing the cal- 
culations, we merely assert that our calculations sup- 
port the expectation that fho~o~(X) ~fv=tr¢l(X) if the 
two flows are nearly smooth. However, as expected, 
this is not true for significantly wavy flows because 
the two wavy structures are very different. 

8. ASSESSMENT OF HEAT TRANSFER 
CORRELATIONS 

There are several heat transfer correlations avail- 
able for internal condensing flows in vertical pipes. 
These are typically given in terms of internal flow 
variables (such as local values of condensate Reynolds 
number, the ratio of cross-sectional vapor mass flow 
to total mass flow rate, etc.) and cannot be assessed 
without a reliable predictive tool or direct and inde- 
pendent experim,:ntal measurements of the internal 
variables. Therelqare, we solve equation (1 l) for cyl- 
indrical geometry, w i th fa s  in equation (22) and fmodel 
given by fmoael6 ila equation ( A l l )  of the Appendix. 
The theoretical predictions are used to calculate aver- 
age heat transfer co-efficients and these predictions 
are then also corapared with the values obtained by 
theoretically evaluating some well known correlations 
for local heat transfer coefficients. Here we consider: 
(i) correlation 1 which is Traviss et al. [39] correlation 
given in Carey [41] ; (ii) correlation 2 which is Shah [20] 

correlation given in Carey [41] ; and (iii) correlation 3 
which is the correlation given in Numrich [40]. The 
results, not shown here for brevity, indicates that cor- 
relation 1 is good to satisfactory (nearly within + 25%) 
for experiment I and poor (not wi thin+30%) for 
experiment II, correlation 2 is satisfactory 
(within+35%) for experiments I and II, and cor- 
relation 3 is good (within + 10%) for experiment I and 
poor (not within + 30%) for experiment II. 

Although the Shah [20] correlation is satisfactory 
for the parameter range considered here, the above 
assessments demonstrate the need for better defined 
and more reliable heat transfer correlations. Further- 
more, we have shown that development of more accu- 
rate and well defined interfacial shear models would 
automatically lead to better predictions of  heat trans- 
fer coefficients. These predicted values can then be 
correlated for direct use. 

9. OPEN ISSUES 

This paper outlined an approach for the devel- 
opment of theoretical/computational predictive abili- 
ties. However, it also establishes the need for address- 
ing the following issues : 

• More general experimental development of flow 
regime maps for specific flow geometries covering a 
suitable range of the parameters in (2), a surface 
tension parameter (say trp,Ld#~), and a parameter 
representing the normal component of gravity (say 
#yLc/U2). Such maps can, in particular, more reliably 
identify negligible entrainment annular flow 
regimes. 

• More accurate experimental measurements of mean 
film thickness, mean pressure drops, etc. in addition 
to measurements of local or average heat transfer 
coefficients. This would allow development of more 
effective and reliable interfacial shear models. If suit- 
able experiments covering commonly occurring 
range of parameter values in (2) become available, 
the approach of this paper can yield good interracial 
shear models and detailed analytical/computational 
predictive abilities. 

• More accurate experimental measurements of local 
flow variables in real time are needed for assistance 
in: (i) developing a criteria better than 
ReL(x) < 1600 to mark liquid condensate's tran- 
sition from laminar to turbulent regime; (ii) 
developing a good rule for determining when the 
vapor core is laminar or turbulent (this should be 
done in the light of relaminarization expected for 
turbulent vapor flows as they slow down in the 
downstream regions); and (iii) developing a quali- 
tative characterisation of interfacial wave structures 
and their relationship to models for mean interfacial 
shear.  

10. DISCUSSIONS AND RESULTS 

The asymptotic form of friction factor model given 
in equation (9) is derived from a simple physical argu- 
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ment and is the general form of a related result given 
in Narain [25]. This asymptotic form of friction factor 
is satisfied by the classical exact solutions of Sparrow 
and Gregg [3], Koh [13], etc. and is shown here to 
be the required solvability condition for analytical/ 
computational solution of flows in tilted channels and 
vertical pipes. Therefore, at the point of onset of con- 
densation, this asymptotic form should be used in 
place of the asymptotic models of Shekriladze and 
Gomelauri [26] or other related models (Jensen and 
Yuen [47], Linehan et al. [48], etc.). The idea behind 
the model of Shekriladze and Gomelauri [26] type 
models is simple and slightly flawed for internal flow 
situations. This model recognizes the importance of 
mass transfer and associated momentum transfer 
across the interface and attempts to put this effect in 
the form of an "effective" interfacial shear. The first 
flaw comes from the assumption that it is the momen- 
tum flux contribution ~Uu,v (see equation (A3)) rep- 
resenting the momentum upstream ofx = 0 (assuming 
uniform flow at inlet) which is relevant for deter- 
mining interfacial shear, whereas, in fact, it is the 
contribution ~u~l(=~UuO from the near interface 
locations that are quantitatively more relevant. In this 
sense, Shekriladze and Gomelauri [26] and related 
models merely assert that we drop the interface 
momentum transfer term called the "kick back" term 
(i.e. the third term on the left side of the vapor momen- 
tum balance equation (9) of Narain [25]) and build its 
effect into a suitable expression for an interfacial shear 
modelf. A substitution of equation (A3), after replac- 
ing ~eUu,v by ~Uuf, for f i n  equation (9) of Narain 
[25], while dropping the "kick back" term, confirms 
that this indeed is the essential idea. The second flaw 
in this model comes from the basic result of this paper 
that, even after correctly accounting for momentum 
transfer, the asymptotic form of shear is not deter- 
mined by this phenomenon at x ~ 0. In fact, a com- 
bined consideration of all the governing equations in 
equation (11) has established that the dominant effect 
on the asymptotic form of interfacial shear is con- 
trolled by mass balance while the interfacial momen- 
tum transfer plays a lesser role for internal flow situ- 
ations. 

Despite the clear evidence above of inadequacy of 
Shekriladze and Gomelauri [26] and related asymp- 
totic shear models for internal flows, we would like 
to assert that we have not investigated this model's 
capability for external condensing flows over cylin- 
ders. In fact a significant amount of work in this area 
(Rose [49], Michael et al. [50], Memory and Rose 
[51], etc.) report that Shekriladze and Gomelauri [26] 
model is good for studying condensate thickness vari- 
ations in this external flow situation. Perhaps this is 
due to the external nature of the near interface vapor 
boundary layer in these studies and perhaps this is 
also due to the fact that there are no locations where 
film thickness A is zero. 

Using a computer algebra based analytical/ 
computational non-linear analysis, we showed (Sec- 

tion 5) how to use the above solvability condition 
towards resolving the "elliptic" singularity at the 
point of onset of condensation (x = 0). This method 
probes the nature of solution at short downstream 
locations until convergence (at x ~ 0) is achieved. In 
Sections 4-6 we showed that the above resolution of 
singularity can lead to effective one- (or two-) dimen- 
sional numerical solution schemes. The one-dimen- 
sional scheme is implemented here and the results of 
the two-dimensional scheme will be reported in future 
works. The novel algorithm of resolving the singu- 
larity is shown, in Section 6, to yield results in excellent 
agreement with the exact similarity solutions (Koh 
[13], etc.) for film condensation. 

The assessments of various interfacial shear models 
in Table 2 indicates that, except for Model 5 and 
Model 6, there are no reliable and reasonably accurate 
models currently available for internal "annular" film 
condensation situation. Our identification/proposal is 
that modified Andreussi model (Model 6 in equation 
(All))  for vertical configuration and Narain type 
model (Model 5 in equation (A10)) for all con- 
figurations show promise and should be developed 
with the help of further experiments and theor- 
etical/computational predictions. 

The assessment of some representative heat transfer 
correlations show the adequate nature of Shah [20] 
correlation for the flows considered here. We know 
from Narain [25] that the one dimensional scheme 
properly predicts the average vapor speed u,v(x) and 
the mean film thickness 6(x) quite reliably for a 
"good" friction factor model. There it was shown that 
the one-dimensional solution for Uav and 6, away from 
x ~ 0, is insensitive to the actual cross-sectional vari- 
ations in vapor velocity and to the vapor entry con- 
ditions (whether fully developed or uniform). The 
variables Uav(X) and 6(x) control the motion of the 
liquid condensate and are somewhat insensitive to 
modest changes (see Narain [25]) in pressure g(x) for 
different vapor entry conditions. Since the average 
pressure variations ~(x) are affected (see Narain [25]) 
by entrance conditions, a two-dimensional numerical 
solution scheme is needed for this variable. 

In Fig. 3 we show how the liquid condensate thick- 
ens when a tilted channel (Fr- ~ = 0.053) is made hori- 
zontal (Fr-J= 0). The downstream thinning of the 
condensate in the vertical situation of Fig. 3 is due 
to the gravitational acceleration of the condensate. 
Equations (17)-(18) assert that this thinning does not 
happen for the shear dominated portion at x ~ 0 ; in 
fact there is a thickening of the condensate here. This 
is because, at x ~ 0, gravity is able to reduce interfacial 
shear without being able to significantly accelerate the 
liquid condensate (velocity is very nearly given by 
equation (6)). Although not shown here for brevity, as 
expected, the faster condensate drainage in the vertical 
situation causes much lower u,v(x) values as compared 
to the corresponding horizontal situation. For pre- 
dictions in Figs. 3-5, we used the "good" Modified 
Henstock and Hanratty/Andreussi model (equation 
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Fig. 3. Tlze horizontal flow situation (Fr-l = 0) above is specified by run no. 248 of Experiment III in 
Table 2. The predictions for the horizontal configuration are done by the "good" Model 5 (fl = 4.1, see 
Narain [25]) and the approximate Model 6 (by setting f~ode,-'¢0 ~ f ,  ode,-'=0). The predictions for the 
vertical configuration (Fr-~= 0.053) are for the same flow except for the change in orientation. The 
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the same flow with x -= z/L~ and L~ = D = 4h. 
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Fig. 4. For each flow situation described in Fig. 3 for predicting film thickness ~, the corresponding 
predictions of the non-dimensional pressure n are shown above. 

(A11)) in equation (22) for the Fr -~ # 0 situation and 
an approximate model, obtained by setting 
feller -~ ~0 ~ frodFr -~ = 0, for the Fr- ] = 0 situation. Note 
that a better prediction for the horizontal con- 
figuration (Fr -~ := 0) is obtained for channel flows by 
employing Model 5 of Narain  [25], the results for this 
model are also shown in Figs 3 and 4. The pipe flow 
and channel flow situations are the same except, for 
pipe flow, x -  x/Lc and Lc = D = 4h. As expected, 
in Fig. 4, we see that the gravitational assistance in 
condensate removal leads to much smaller needs in 

pressure drop (or pumping power). In  fact for vertical 
(Fr-] = 0.053) channel flow configuration, at many 
locations in Fig. 4, there is a pressure recovery (Tt > 0) 
and this is feasible (e.g. see some pressure drop data 
in Fig. 6 of Owen et al. [52]) and interesting. Increasing 
average n(x) or pressure recovery for this gravity 
assisted (Fr-] = 0.053) situation is consistent with the 
deceleration of the vapor flow needed to sufficiently 
reduce vapor speeds so as to meet the demands of 
increased condensation rate associated with thinner 
condensate and faster drainage. The pressure results 
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Fig. 5. The predictions of the friction factor f a re  for R113 vapor flow conditions specified by run no. 248 
of experiment III in Table 2. The horizontal channel has Fr- ~ = 0 and the vertical channel has Fr-* = 0.053. 
The Fr-~ = 0 horizontal channel situation employs the "good" fmode*s = fifo, fl = 4.1 in equation (22). The 
values for Fr - ~ = 0 case for cylinders is obtained by usingfmod~,6 for the vertical (Fr- ~ = 0.212) configuration 

and then modifying these values under the assumption f, etl~-' ~ o ~ f~dF, '= o. 

for downflow in a vertical pipe in terrestrial environ- 
ments (Fr -~ = 0.212) and in micro-gravity environ- 
ments (Fr-~ = 0) were obtained along with the film 
thickness results in Fig. 3. Fo r  the flow situation con- 
sidered in Figs 3 and 4, some of  the actual variations 
in the interfacial friction factor f a r e  shown in Fig. 5. 
Note  that physical values of  interfacial shear z i, given 
by equation (3), are quite different for the vertical 
and the horizontal situations because of  significant 
differences in the values of  average vapor  speed Uav(X). 
The trends of  the variables 6, u,v and n with changes 
in speed U (or Rei,) and temperature difference AY- 
(or Ja/Prl) are similar to those for the horizontal 
situation given in Narain  [25] and Narain  [42]. 

11. CONCLUSIONS 

• We presented a new and general asymptotic form of  
interfacial shear (for large condensation rates at the 
onset of  condensation) required for the solution of  
the classical equations modeling annular film con- 
densation. 

• We demonstrated that traditional asymptotic inter- 
facial shear models do not  work for internal annular 
flows. 

• We presented a novel computer  algebra based ana- 
lytical/computational nonlinear analysis and algo- 
rithm for resolving the singularity at x ~ 0. We also 
showed that this algorithm yields results in agree- 
ment  with well-known exact solutions of  film con- 
densation. 

• We implemented a one-dimensional computat ional  
scheme for downflow in channels and vertical pipes. 
We showed the value of  this approach for forth- 

coming two-dimensional computat ional  simu- 
lations. 

• We assessed popular interfacial shear models for 
their validity at points away from the singularity 
and proposed/identified two good models which 
may need further improvements. 

• We showed the value of  this approach in evaluating 
and proposing heat transfer correlations. 

• We showed that our computat ions have many regu- 
larities for problems with constant or variable con- 
densing surface temperatures. 
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APPENDIX A 

The new definitions of AZ2 and b, are 

A 
22 

b, = - -&&--{l-u~“(l-2”)zI 

C-41) 

- u&f(3 -46) + E Fr- ‘. 1 (A2) 

Shekriladze and Gomelauri model [26] 
Using the notation in equation (3), this model is given by : 

z’ = m[Uu,(x)] 
PI m(x) 

or fmods, , = 2 - - 
Pz u&x) 

(A3) 

Mickley [33] orfilm model 
Considering single phase channel flow friction f0 for tur- 

bulent flows, this model is 

f mods~~ =.hMh/(exp(d~)- 111 (A4) 

where 4, = -fmodcl ,/fo,fo = 0.0713 (Re2u,,(x))Y5 andfmod,, I 
is given in equation (A3). 

Andreussi [36] or Henstock and Hanratty [35] Model: 
The definition of this model uses .fO defined in equation 

(A4) and the following quantities : 

Using equation (A5), this model is given by 

f model3 =foP + 14OOW (‘46) 

F ~ [(0.707Rei 5)2~5+(0.0379Re~9)*~5]0~4 

Re0,9 G 

0.27(~*)“’ for r* < 1.8 
Ye 

0.33(5*)“3 
(A7) 

for 1.8 < r* < 30 

and the function_&p,/p,) in Andreussi [36] is 

fCP*/Pd = Jaz WI 

Note that Henstock and Hanratty [35] originally recom- 
mended Y = { 1 -exp( - z*)} for Y in equation (A7). 

Andreussi [36] model with Shekriladze and Gomelauri [26] 
asymptotic behavior 

This model is given by 

f model4 =fm,d,l~[~z/(exp(~2)- 111, 

where & = -fmodel I/fmode13. 

(A9) 

Narain [25] modelfor horizontal channelflows 
This model is given by 

f model 5 = Bf,W (A101 

where fo(x) is given in equation (A4) and the number /I as a 
function /I (Re,,, Ja/Pr,, u*/u,, Fr-‘, p,/p,) is to be developed. 
In Table 2, we selected B for each specific flow situation 
so as to make the predictions agree with experiments. A 
correlation for /I, for Fr-’ = 0, with the remaining par- 
ameters in a restricted range, is given in Narain [25]. 

Modified Henstock and HanrattylAndreussi model 
This model is the same as the Andreussi_model [36] in 

equations (A5HA8) except thatthe functionf(p,/p,) in equa- 
tion (AS) has been replaced by fmodifid given below : 

f mdd d = fmodel 3 except 

fzmdlfied(P2/PI) 

c 
0.001235 In (pz/p,)+0.00957 

for 0.0005 i e < 0.00182 
‘PI’ 

= 0.05900ln(p,/p,)+0.37900 
(All) 

I for 0.00182 < E < 0.005 

Overall energy balance 
Overall energy balance for a control volume (of cross- 

sectional area A, and condensing surface area Acond) bounded 
bythetwoplatesatg=Oandy=h,X=OandsomeX>O 
in Fig. 1, is essentially 

where A~,,,, = p#A,, &, &, &, Ri, Rp and RF* are, respec- 
tively, the total mass flux, the cross-sectional liquid mass- 
flux at x, the cross-sectional vapor mass flux at x, the heat 
removal rate from the condensing surface, enthalpy of satu- 
rated vapor at a representative pressure (=p,,), enthalpy of 
saturated liquid at a representative pressure (-p,), and the 
heat of vaporization. With & = &A,,.,A.Y and mass bal- 
ance requirement A,,,,, = && + &, equation (A 12) becomes 

& = ~(P~U)(A,/A,,,~)(~/(A~))(~/A~) 6413) 

where z = &i/&z& = z(x, Re,, Ja/Pr,, Fr-‘, p21pI, &p,). 
The arguments of the liquid fraction z at any x follows 

from the definition of ++& and & given in equation (A5) and 
the non-dimensionalization of variables leading to the list in 

(2). 

Parameter range 
Experimental runs considered here restrict us to the fol- 

lowing parameter range for channel flows : 
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0.0006 ~< ~ .  ~< 0.0054, 0.016 ~</~ ~< 0.06, 
Pl /tl 

Ja ~< 0.045 I).005 ~< Prl "~ 

5660 < Rei. <~ 90000 andO ~ F r  -1 <X 0.2 (AI4) 

and to the following parameter range for downflow in vertical pipes: 

0.0006 ~< P2 ~< 0.005, 0.018 ~< #2 ~< 0.06, 
Pl #l 

~<Ja 
0.005 -.~ - -  ~< 0.02 

Pr~ 

36500 ~< Rein ~< 340000 and 0~<Fr-1~<0.24 (A15) 


